Nucleic Acids Research | 北京大學高歌團隊開發(fā)長非編碼RNA全面注釋平臺AnnoLnc2-肽度TIMEDOO
長非編碼RNA(Long noncoding RNAs,lncRNA)是一類新型調(diào)控分子,近期研究發(fā)現(xiàn)其在從胚胎發(fā)育到腫瘤發(fā)生等多種生理病理過程中發(fā)揮核心調(diào)控作用[1–5]。因此,隨著越來越多的長非編碼RNA被鑒定[6, 7],一批計算工具應運而生,為生物學家預測lncRNA的GO功能和調(diào)控網(wǎng)絡[8]、亞細胞定位[9,10],乃至lncRNA-RNA[11]、lncRNA-蛋白[12]相互作用等提供了重要的工具。然而,這些工具僅支持從單一角度對長非編碼RNA進行注釋,難以涵蓋lncRNA的功能全譜。
2016年,北京大學高歌課題組開發(fā)了長非編碼RNA在線注釋平臺AnnoLnc[13],基于700多套高通量數(shù)據(jù)和先進的計算流程實現(xiàn)了對任意人類長非編碼RNA 從序列結(jié)構(gòu)到進化模式的全面注釋。作為國際首個長非編碼RNA在線注釋平臺,AnnoLnc自2016年11月正式上線以來已成為相關(guān)領(lǐng)域的主流工具,支撐了來自全球5萬余用戶提交的近7千萬條序列分析,并獲邀為SpringNature?Methods in Molecular Biology系列叢書撰寫專題介紹章節(jié)。
日前,高歌課題組在此基礎(chǔ)上全面更新升級了AnnoLnc平臺。新版本AnnoLnc2整合了十個注釋模塊(圖1),注釋內(nèi)容涵蓋了序列和結(jié)構(gòu)、表達和調(diào)控、功能和相互作用、以及演化和遺傳關(guān)聯(lián),為研究長非編碼RNA的功能及其作用機制提供了高效、全面的分析平臺,并為后續(xù)的生物學研究提供了重要的線索。例如,演化模塊的注釋結(jié)果可以揭示長非編碼RNA是否具有保守的功能[14];亞細胞定位模塊的注釋結(jié)果可以揭示它們在何處發(fā)揮功能[15];功能富集模塊的注釋結(jié)果可以揭示它們發(fā)揮怎樣的功能[16];miRNA調(diào)控和蛋白相互作用模塊的注釋結(jié)果可以揭示潛在的功能機制[17, 18]等。
Nucleic Acids Research | 北京大學高歌團隊開發(fā)長非編碼RNA全面注釋平臺AnnoLnc2-肽度TIMEDOO

圖1. AnnoLnc2框架

AnnoLnc2網(wǎng)站操作便捷。用戶僅需上傳或者輸入待分析的序列,選擇相應物種,即可進行一鍵式分析(圖2A)。每條序列的注釋結(jié)果均有一個對應的網(wǎng)頁界面,各模塊的注釋結(jié)果以交互式的圖表的形式展示,以便用戶檢索感興趣的條目。用戶可批量下載所有的注釋結(jié)果(圖2B)以用于后續(xù)研究。與AnnoLnc1相比,AnnoLnc2首次對小鼠長非編碼RNA提供了全面支持。
Nucleic Acids Research | 北京大學高歌團隊開發(fā)長非編碼RNA全面注釋平臺AnnoLnc2-肽度TIMEDOO

圖2. AnnoLnc2 網(wǎng)頁界面。用戶可通過一個三步驟的操作運行AnnoLnc2(A),并查看詳細的注釋結(jié)果,以及批量下載所有的注釋結(jié)果(B)

為了滿足批量分析的需求,AnnoLnc2還為用戶提供了可進行大規(guī)模線下分析的單機版本(下載鏈接:http://annolnc.gao-lab.org/download.php)。該單機版不僅包含了在線版本的全部功能,還支持自定義模塊和自定義注釋數(shù)據(jù),用戶可以基于自產(chǎn)數(shù)據(jù)(如RNA-seq數(shù)據(jù))指定感興趣的模塊進行批量分析。
該研究于2020年5月14日以“AnnoLnc2: the one-stop portal to systematically annotate novel lncRNAs for human and mouse”為題在線發(fā)表于Nucleic Acids Research。PTN項目博士生柯嵐、楊德昌為共同第一作者北京大學生物醫(yī)學前沿創(chuàng)新中心 (BIOPIC)/北京未來基因診斷高精尖創(chuàng)新中心(ICG)、生物信息中心(CBI)暨蛋白質(zhì)與植物基因研究國家重點實驗室高歌研究員為通訊作者,王宇、丁陽等合作者在平臺構(gòu)建和文章寫作方面作出貢獻。該研究得到國家重點研發(fā)計劃, ICG和蛋白質(zhì)與植物基因研究國家重點實驗室的支持和資助。

AnnoLnc2網(wǎng)址:http://annolnc.gao-lab.org/

原文鏈接:https://doi.org/10.1093/nar/gkaa368

參考文獻:

1. Batista,P.J. and Chang,H.Y. (2013) Long noncoding RNAs: Cellular address codes in development and disease.?Cell, 152, 1298–1307.

2. Wapinski,O. and Chang,H.Y. (2011) Long noncoding RNAs and human disease.?Trends Cell Biol., 21, 354–361.

3. Faghihi,M.A., Modarresi,F., Khalil,A.M., Wood,D.E., Sahagan,B.G., Morgan,T.E., Finch,C.E., St. Laurent,G., Kenny,P.J. and Wahlestedt,C. (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase.?Nat. Med., 14, 723–730.

4. Mourtada-Maarabouni,M., Pickard,M.R., Hedge,V.L., Farzaneh,F. and Williams,G.T. (2009) GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer.?Oncogene, 28, 195–208.

5. Gupta,R.A., Shah,N., Wang,K.C., Kim,J., Horlings,H.M., Wong,D.J., Tsai,M.-C., Hung,T., Argani,P., Rinn,J.L.,?et al.?(2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.?Nature, 464, 1071–1076.

6. Frankish,A., Diekhans,M., Ferreira,A.M., Johnson,R., Jungreis,I., Loveland,J., Mudge,J.M., Sisu,C., Wright,J., Armstrong,J.,?et al.?(2019) GENCODE reference annotation for the human and mouse genomes.?Nucleic Acids Res., 47, D766–D773.

7. Jiang,S., Cheng,S.-J., Ren,L.-C., Wang,Q., Kang,Y.-J., Ding,Y., Hou,M., Yang,X.-X., Lin,Y., Liang,N.,?et al.?(2019) An expanded landscape of human long noncoding RNA.?Nucleic Acids Res., 47, 7842–7856.

8. Zhou,J., Huang,Y., Ding,Y., Yuan,J., Wang,H. and Sun,H. (2018) lncFunTK: a toolkit for functional annotation of long noncoding RNAs.?Bioinformatics, 34, 3415–3416.

9. Cao,Z., Pan,X., Yang,Y., Huang,Y. and Shen,H.-B. (2018) The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier.?Bioinformatics, 34, 2185–2194.

10. Su,Z.-D., Huang,Y., Zhang,Z.-Y., Zhao,Y.-W., Wang,D., Chen,W., Chou,K.-C. and Lin,H. (2018) iLoc-lncRNA: predict the subcellular location of lncRNAs by incorporating octamer composition into general PseKNC.?Bioinformatics, 34, 4196–4204.

11. Li,J., Ma,W., Zeng,P., Wang,J., Geng,B., Yang,J. and Cui,Q. (2015) LncTar: a tool for predicting the RNA targets of long noncoding RNAs.?Brief. Bioinform., 16, 806–12.

12. Zhang,W., Yue,X., Tang,G., Wu,W., Huang,F. and Zhang,X. (2018) SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions.?PLOS Comput. Biol., 14, e1006616.

13. Hou,M., Tang,X., Tian,F., Shi,F., Liu,F. and Gao,G. (2016) AnnoLnc: a web server for systematically annotating novel human lncRNAs.?BMC Genomics, 17, 931.

14. Ponjavic,J., Ponting,C.P. and Lunter,G. (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs.?Genome Res., 17, 556–65.

15. Zhang,K., Shi,Z.M., Chang,Y.N., Hu,Z.M., Qi,H.X. and Hong,W. (2014) The ways of action of long non-coding RNAs in cytoplasm and nucleus.?Gene,?547, 1–9.

16. Guttman,M., Amit,I., Garber,M., French,C., Lin,M.F., Feldser,D., Huarte,M., Zuk,O., Carey,B.W., Cassady,J.P.,?et al.?(2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.?Nature, 458, 223–7.

17. Yoon,J.-H., Abdelmohsen,K. and Gorospe,M. (2014) Functional interactions among microRNAs and long noncoding RNAs.?Semin.?Cell Dev. Biol., 34, 9–14.

18. Castello,A., Fischer,B., Eichelbaum,K., Horos,R., Beckmann,B.M., Strein,C., Davey,N.E., Humphreys,D.T., Preiss,T., Steinmetz,L.M.,?et al.?(2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.?Cell,?149, 1393–406.

來源:北京未來基因診斷高精尖創(chuàng)新中心