來(lái)自同濟(jì)大學(xué)生命科學(xué)與技術(shù)學(xué)院高紹榮教授領(lǐng)導(dǎo)的團(tuán)隊(duì)與暨南大學(xué)鞠振宇教授領(lǐng)導(dǎo)的團(tuán)隊(duì)在Cell Stem Cell雜志上發(fā)表了題為“Dcaf11 activates Zscan4-mediated alternative telomere lengthening in early embryos and embryonic stem cells”的研究成果。該研究在小鼠胚胎干細(xì)胞中進(jìn)行了ALT相關(guān)因子的篩選,發(fā)現(xiàn)了Dcaf11在小鼠早期胚胎和胚胎干細(xì)胞ALT介導(dǎo)的端粒延伸和維持中發(fā)揮重要作用。Dcaf11缺失會(huì)導(dǎo)致小鼠端??s短,進(jìn)而引發(fā)Dcaf11敲除小鼠骨髓造血干細(xì)胞造血重建能力及應(yīng)激狀態(tài)下的損傷修復(fù)能力顯著下降。隨后,研究人員研究了Dcaf11的互作蛋白,發(fā)現(xiàn)Dcaf11可促進(jìn)Kap1泛素化降解,進(jìn)而激活A(yù)LT相關(guān)基因Zscan4的表達(dá)。該工作揭示了早期胚胎ALT過(guò)程中的關(guān)鍵因子及作用機(jī)制,為進(jìn)一步理解早期胚胎ALT機(jī)制提供了重要的線索。

端粒能防止染色體末端的重組和降解,對(duì)細(xì)胞維持染色體的穩(wěn)定性有重要的作用(Blasco, 2005)。成體細(xì)胞由于缺乏有效的端粒維持機(jī)制,端粒在胞分裂中逐漸縮短,最終引發(fā)細(xì)胞分裂的停滯和衰老(Blasco, 2005; Harley et al., 1990)。端??s短是引發(fā)個(gè)體衰老的重要原因,是許多人類(lèi)衰老相關(guān)疾病的典型病癥(Cawthon et al., 2003; Lopez-Otin et al., 2013; Oh et al., 2003; Samani et al., 2001)。端粒的延伸可以通過(guò)兩種機(jī)制來(lái)實(shí)現(xiàn):端粒酶依賴機(jī)制和不依賴端粒酶的端粒延長(zhǎng)機(jī)制(Alternative lengthening of telomeres,ALT)(Greider and Blackburn, 1985; Henson et al., 2002; Liu et al., 2007)。ALT是小鼠早期胚胎和胚胎干細(xì)胞端粒延長(zhǎng)的重要機(jī)制(Liu et al., 2007; Tardat and Dejardin, 2018; Zalzman et al., 2010)。此外,約有10-15%腫瘤細(xì)胞依賴于ALT 機(jī)制來(lái)進(jìn)行端粒延長(zhǎng)(Dunham et al., 2000; Shay and Bacchetti, 1997)。然而,目前人們對(duì)于ALT發(fā)生過(guò)程的具體分子機(jī)制知之甚少。

2014年,高紹榮教授課題組利用端粒酶敲除小鼠模型研究了核移植技術(shù)、iPS技術(shù)重編程端粒缺陷的能力,研究表明卵母細(xì)胞中存在著能高效修復(fù)供體細(xì)胞端粒缺陷的ALT因子(Le et al., 2014)(第一作者為樂(lè)融融博士)。然而參與胚胎ALT機(jī)制的關(guān)鍵因子及分子機(jī)制還尚不明晰。早期胚胎的匱乏極大地限制了相關(guān)研究工作的開(kāi)展。為了解答這個(gè)問(wèn)題,高紹榮課題組利用高靈敏的蛋白定量質(zhì)譜技術(shù),檢測(cè)了小鼠植入前胚胎受精卵,2-細(xì)胞,4-細(xì)胞,8-細(xì)胞,桑葚胚和囊胚等六個(gè)時(shí)期的蛋白質(zhì)組信息,成功確認(rèn)了植入前胚胎中四千多個(gè)蛋白的含量變化信息,并首次繪制了小鼠植入前胚胎蛋白質(zhì)組動(dòng)態(tài)圖譜(Gao et al., 2017)。

基于這一信息,團(tuán)隊(duì)研究成員進(jìn)一步在胚胎干細(xì)胞中對(duì)早期胚胎中潛在的ALT相關(guān)因子進(jìn)行了篩選,并發(fā)現(xiàn)了一系列影響早期胚胎ALT過(guò)程的基因,其中Dcaf11對(duì)于促進(jìn)胚胎干細(xì)胞ALT的激活最為明顯。隨后研究人員構(gòu)建了Dcaf11敲除小鼠,分析了Dcaf11在小鼠胚胎發(fā)育中的作用。結(jié)果顯示Dcaf11的缺失會(huì)引起小鼠植入前胚胎發(fā)育率下降、基因表達(dá)異常和卵裂期胚胎端粒延伸速率下降。

隨Dcaf11敲除小鼠代數(shù)的增加,Dcaf11敲除小鼠端粒逐漸縮短。晚代數(shù)Dcaf11敲除小鼠骨髓造血干細(xì)胞造血重建能力及在應(yīng)激狀態(tài)下的損傷修復(fù)能力顯著下降。

接下來(lái)研究人員對(duì)Dcaf11促進(jìn)端粒延長(zhǎng)的機(jī)制進(jìn)行了探究。研究人員發(fā)現(xiàn),Dcaf11作為E3泛素連接酶識(shí)別蛋白,靶向底物Kap1并促進(jìn)其降解。在Dcaf11敲除的ESC中敲降Kap1可重新激活Zscan4,進(jìn)而修復(fù)Dcaf11缺失引發(fā)的端粒缺陷,表明Dcaf11通過(guò)降解Kap1來(lái)激活Zscan4介導(dǎo)的端粒延伸。研究者們進(jìn)一步發(fā)現(xiàn)Kap1可結(jié)合在Zscan4的下游增強(qiáng)子上,通過(guò)維持該處的H3K9me3修飾來(lái)抑制Zscan4的激活。當(dāng)細(xì)胞中過(guò)表達(dá)Dcaf11時(shí),結(jié)合在Zscan4增強(qiáng)子處的Kap1被降解,Zscan4得以激活,進(jìn)而促進(jìn)端粒延長(zhǎng)。

綜上所述,這項(xiàng)研究揭示了Dcaf11在早期胚胎ALT介導(dǎo)的端粒延伸中的作用機(jī)制,為進(jìn)一步理解早期胚胎端粒延伸和調(diào)控機(jī)制提供重要線索。

同濟(jì)大學(xué)高紹榮課題組助理教授樂(lè)融融、直博生黃憶鑫、助理研究員張艷平、暨南大學(xué)鞠振宇課題組汪虎教授、同濟(jì)大學(xué)高紹榮課題組碩士生林嘉明為該論文的共同第一作者,高紹榮教授、鞠振宇教授、樂(lè)融融助理教授為共同通訊作者。該研究得到了科技部重點(diǎn)研發(fā)計(jì)劃、國(guó)家自然科學(xué)基金委、上海市科委等項(xiàng)目的支持。

文獻(xiàn)引用

Blasco, M.A. (2005). Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6, 611-622.

Cawthon, R.M., Smith, K.R., O’Brien, E., Sivatchenko, A., and Kerber, R.A. (2003). Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361, 393-395.

Dunham, M.A., Neumann, A.A., Fasching, C.L., and Reddel, R.R. (2000). Telomere maintenance by recombination in human cells. Nat Genet 26, 447-450.

Gao, Y., Liu, X., Tang, B., Li, C., Kou, Z., Li, L., Liu, W., Wu, Y., Kou, X., Li, J., et al. (2017). Protein Expression Landscape of Mouse Embryos during Pre-implantation Development. Cell Rep 21, 3957-3969.

Greider, C.W., and Blackburn, E.H. (1985). Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405-413.

Harley, C.B., Futcher, A.B., and Greider, C.W. (1990). Telomeres Shorten during Aging of Human Fibroblasts. Nature 345, 458-460.

Henson, J.D., Neumann, A.A., Yeager, T.R., and Reddel, R.R. (2002). Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598-610.

Le, R., Kou, Z., Jiang, Y., Li, M., Huang, B., Liu, W., Li, H., Kou, X., He, W., Rudolph, K.L., et al. (2014). Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells. Cell Stem Cell 14, 27-39.

Liu, L., Bailey, S.M., Okuka, M., Munoz, P., Li, C., Zhou, L., Wu, C., Czerwiec, E., Sandler, L., Seyfang, A., et al. (2007). Telomere lengthening early in development. Nat Cell Biol 9, 1436-1441.

Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. (2013). The hallmarks of aging. Cell 153, 1194-1217.

Oh, H., Wang, S.C., Prahash, A., Sano, M., Moravec, C.S., Taffet, G.E., Michael, L.H., Youker, K.A., Entman, M.L., and Schneider, M.D. (2003). Telomere attrition and Chk2 activation in human heart failure. Proc Natl Acad Sci U S A 100, 5378-5383.

Samani, N.J., Boultby, R., Butler, R., Thompson, J.R., and Goodall, A.H. (2001). Telomere shortening in atherosclerosis. Lancet 358, 472-473.

Shay, J.W., and Bacchetti, S. (1997). A survey of telomerase activity in human cancer. Eur J Cancer 33, 787-791.

Tardat, M., and Dejardin, J. (2018). Telomere chromatin establishment and its maintenance during mammalian development. Chromosoma 127, 3-18.

Zalzman, M., Falco, G., Sharova, L.V., Nishiyama, A., Thomas, M., Lee, S.L., Stagg, C.A., Hoang, H.G., Yang, H.T., Indig, F.E., et al. (2010). Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858-863.

來(lái)源:同濟(jì)大學(xué)